#### **Muon Cooling Design Status**

Diktys Stratakis
Fermi National Accelerator Laboratory

APS Meeting, Muon Collider Symposium (Virtual)
April 17, 2021

#### **Outline**

- Muon Collider overview
- Ionization cooling
  - Basic theory
  - Application to a Muon Collider
  - Simulation results
- Future directions
- Summary

#### Muon Collider parameters

Parameters as developed by the MAP effort:

$$\mathcal{L} = \frac{f_{col} \cdot n_{\mu_{+}} \cdot n_{\mu_{-}} \cdot \beta \cdot \gamma}{4\pi \left(\varepsilon_{x,n} \cdot \beta_{x}^{*}\right)^{1/2} \cdot \left(\varepsilon_{y,n} \cdot \beta_{y}^{*}\right)^{1/2}}$$

| Parameter                               | Units                              | Higgs  | Top-high<br>resolution | Top-high<br>luminosity |          | Multi-TeV   |         |   |
|-----------------------------------------|------------------------------------|--------|------------------------|------------------------|----------|-------------|---------|---|
| CoM energy                              | ${ m TeV}$                         | 0.126  | 0.35                   | 0.35                   | 1.5      | 3.0         | 6.0*    | T |
| Avg. luminosity                         | $10^{34}  \mathrm{cm}^{-2} s^{-1}$ | 0.008  | 0.07                   | 0.6                    | 1.25     | 4.4         | 12      | * |
| Beam energy spread                      | %                                  | 0.004  | 0.01                   | 0.1                    | 0.1      | 0.1         | 0.1     |   |
| Higgs production/10 <sup>7</sup> sec    |                                    | 13,500 | 7000                   | 60,000                 | 37,500   | 200,000     | 820,000 |   |
| Circumference                           | km                                 | 0.3    | 0.7                    | 0.7                    | 2.5      | 4.5         | 6       |   |
| Ring depth [1]                          | m                                  | 135    | 135                    | 135                    | 135      | 135         | 540     |   |
| No. of IPs                              |                                    | 1      | 1                      | 1                      | 2        | 2           | 2       |   |
| Repetition rate                         | $_{ m Hz}$                         | 15     | 15                     | 15                     | 15       | 12          | 6       |   |
| $eta_{x,y}^*$                           | cm                                 | 1.7    | 1.5                    | 0.5                    | 1(0.5-2) | 0.5 (0.3-3) | 0.25    |   |
| No. muons/bunch                         | $10^{12}$                          | 4      | 4                      | 3                      | 2        | 2           | 2       |   |
| Norm. trans. emittance, $\varepsilon_T$ | $\pi\mathrm{mm}	ext{-rad}$         | 0.2    | 0.2                    | 0.05                   | 0.025    | 0.025       | 0.025   |   |
| Norm. long. emittance, $\varepsilon_L$  | $\pi\mathrm{mm}	ext{-rad}$         | 1.5    | 1.5                    | 10                     | 70       | 70          | 70      |   |
| Bunch length, $\sigma_s$                | cm                                 | 6.3    | 0.9                    | 0.5                    | 1        | 0.5         | 0.2     |   |
| Proton driver power                     | MW                                 | 4      | 4                      | 4                      | 4        | 4           | 1.6     |   |
| Wall plug power                         | MW                                 | 200    | 203                    | 203                    | 216      | 230         | 270     |   |

<sup>\*</sup>Accounts for off-site neutrino radiation

Muon Collider will require cooling in 6D by 10<sup>6</sup>

Diktys Stratakis

3

#### Cooling for a proton driven MC



- Front-end produces 21 well aligned muon bunches
- Two sets of 6D cooling schemes
  - One <u>before</u> bunch recombination and one <u>after</u> recombination
  - Combined they cool 6D emittance by 10<sup>5</sup>
- Final cooling 4D
  - Additional cooling of the transv. emittance by an order of magnitude

Diktys Stratakis

4

#### Ionization cooling - transverse



Accelerator

Momentum gain is purely longitudinal

Particle Accelerators 1983 Vol. 14 pp. 75-90 0031-2460/83/1401/0075\$18.50/0 © Gordon and Breach, Science Publishers, Inc.
Printed in the United States of America

#### PRINCIPLES AND APPLICATIONS OF MUON COOLING

DAVID NEUFFER

Fermi National Accelerator Laboratory, Batavia, Ill. 60510 U.S.A.

(Received February 17; in final form May 24, 1983)

The basic principles of the application of "ionization cooling" to obtain high phase-space density muon beams are described, and its limitations are outlined. Sample cooling scenarios are presented. Applications of cold muon beams for high-energy physics are described. High-luminosity  $\mu^+\mu^-$  and  $\mu$ -p colliders at more than 1-TeV energy are possible.



Energy loss term |

Multiple scattering term

p, p<sub>v</sub>, p<sub>v</sub>,  $\Delta E$  decrease

**Absorber** 

Momentum loss is

opposite to motion,

$$\frac{d\varepsilon_T}{ds} = -\frac{1}{\beta^2 E} \frac{dE}{ds} \varepsilon_T + \frac{\beta \gamma \beta_T}{2} \frac{d\theta_0^2}{ds}$$

$$\varepsilon_T^{\text{eq}} = \left(\frac{dE}{ds}\right)^{-1} \frac{\beta_T (13.6 \text{ MeV})^2}{2\beta m_\mu c^2 L_R}$$

Cooling can be controlled by material and magnetic focusing properties

- LR: Radiation length
- E: Muon energy
- $\beta_T$ : Transverse beta function
- $\frac{dE}{ds}$ : Energy loss

### Ionization cooling - Iongitudinal

Longitudinal cooling: 
$$\frac{d\sigma_E^2}{ds} = -2 \frac{\partial \left(\frac{dE}{ds}\right)}{\partial E} \sigma_E^2 + \frac{d < \Delta E_{rms}^2 >}{ds}$$

Cooling occurs only if derivative:

$$\frac{\partial \left(\frac{dE}{ds}\right)}{\partial E} > 0$$

- Ionization loss does not naturally provide adequate longitudinal cooling
- Can be enhanced, if it is arranged that high energy muons lose more energy than low energy ones.



### Beam pre-cooling preparation

- Muons are born with large ΔE and small Δt
  - Front-end manipulates the beam from the target so that to create 21 well-aligned bunches
- Use a sequence ~120 rf cavities starting from 490 MHz and decreasing to 325 MHz
  - Can handle muons of both signs simultaneously



#### 6D cooling based on vacuum rf cavities

- One of the two options considered by MAP was a rectilinear channel with vacuum normal conducting rf cavities
- Showed cooling in 6D by 10<sup>5</sup>
- Contains 8 stages with a total length of ~480 m





#### 6D cooling based on gas rf cavities

- MAP also considered a helical cooling channel with hydrogen gas filled cavities
- It was composed of a solenoidal field with superimposed helical transverse dipole & quadrupole fields.
- Multi-staged system that also showed 10<sup>5</sup> cooling in 6D







### Final 4D cooling: High-field magnets

Linear channel for additional 4D cooling with block absorbers

Showed that 30 T magnets can reduce the 4D emittance by an additional order of magnitude -> As needed for a high

luminosity multi-TeV collider





Diktys Stratakis

#### Comments

- 4D ionization cooling has been demonstrated by MICE and direct emittance exchange by the Fermilab Muon Campus
  - Moving from papers studies towards realization!
- Operation of rf cavities in B-fields has been demonstrated with both gas and vacuum rf cavities
  - Allows the use of higher rf gradients in our lattice designs
- Magnet technology progressed & 30+ T magnets are reality
  - Makes 6D cooling designs more flexible; currently considering only Nb<sub>3</sub>Sn technology
- Advancement of optimization algorithms
  - Incorporation of these in lattice designs can make the channels more efficient

Diktys Stratakis

## Future: Simulate with higher gradients



Increasing the rf gradient can reduce the length of the cooling channel

Diktys Stratakis

#### Summary

- Complete cooling schemes for a Muon Collider delivered by MAP with several technology options available
- They show promising transmission but more studies are needed especially towards the final cooling design
- Existing designs will benefit from:
  - Improvements of magnet technology
  - The demonstrated operation of NC rf in B-fields
  - The inclusion of advanced computational methods to improve efficiency
- Successful designs will require the corporation of rf, magnet and material experts

iktys Stratakis

# Demonstration of emittance exchange at the Fermilab Muon Campus

Proof-of-principle experiment: Demonstrated 8% gain

